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Abstract
A discussion on the Physics of Weights and Measures. The theory of electricity using six base

units.

1 Introduction
Legal metrology is a series of de�nitions suitable to establish the working algebra for dimensional analysis,
and for de�ning quantities. It does not handle the variations in nature. For example, the de�nition
B = `µ'H does not account for either that in a magnet, µ might be a dyadic tensor, or even that B might
not vary exactly with H at all. In the free-space condition, the de�nition remains true, and is suited for
de�ning the quantity.

1.1 Some Conventions
Greek letters as pre�xes are used in place of di�erential forms. Such might be regarded as part of the
symbol, and serve to modify it.

β gauss constant β = Q/Φ
γ radiant constant D = Q/γr2

ε electric constant permittivity
η admittance of space

√
ε/µ

κ Linkage constant Q = Iκt
λ density over length λQ = dQ/dl
µ magnetic constant permeability
$ symmetry constant √

εµ
ξ moment of quantity ξQ =

∫
(coordinate) dq

% density over space λQ = dQ/dv
σ density over surface σQ = dQ/da
τ rate of change of Q τQ = dQ/dt

`Q' de�nition of Q This equation de�nes the quantity Q
1/Rn unit vector equal to R/Rn+1

Equations involving vectors, do not replicate a unit vector in the numerator, since 1/R and R produce
a unit vector in the same direction. The equations then represent the true numerical relations.

Equations with quotes, thus F = Q`E' serve to de�ne the quantity in quotes. Here the E is being
de�ned, even though it does not occupy a side of the equation. This save setting the equation into a
form it is not customary to see it in.
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Chapter 1

Basic Concepts

2 Number
A number is something that is counted. Measurements are supposed to be a count of copies of some
unit. However, while �ve cows is always that, �ve gallons might yield a di�erent number when a di�erent
jug is used. Also, the measure less than a gallon, might not necessarily met in gallons, but by using a
smaller jug, like a pint measure.

The supposition of measurements with just one number and one unit, usually expanded into decimals,
is clearly not found in practice. For example, measurement in the English system are largely a series of
numbers and units, such as miles and chains, or pounds and stones.

The truth is, people simply don't like fractions, and generally prefer a construction of several units, or
a large number of a small unit. For example, people-heights are rated in centimetres or feet and inches,
rather than metres or feet, with a fraction or decimal. A money amount like $1.50 might be said as `a
dollar �fty' or even `a dollar �fty cents', rather than `one-point-�ve dollars'.

Percentages (which might be expanded into `basis points' or `mills'), allow one to avoid decimal
fractions, by rating the unit as a hundred or ten thousand, and the intermediate values as an integer.
Sixty percent is the same as zero-point-six, but is more readily understood.

2.1 Cardinals and Ordinals
A cardinal number represents size: eg `six'. An ordinal number represents position: eg `sixth'. The
referrent is the number represented by the cardinal or ordinal: eg, 'six'.

When one expresses a number or measure by cardinals, one gives the completed counts of each level,
eg `�ve hundred and sixty three', means 500 + 60 + 3. The tens-referent is `560', one says it is 3 after
this. The hundreds-referrent is 500, meaning one has this number. The common number system is a
cardinal structure, but such is rarely used of time, although the Mayans used it that way.

In an ordinal system, one refers to the order of the current layer. For example, in 563, one might say
that it is in the sixth hundred, seventh decade and three. That means, for example, �ve hundreds have
come and gone, and the sixth one is current. The referrents are then the next multiple of the place: ie
600, 570, 573. It is used of time in most places, because most people are forward looking.

For example, this is the twenty-�rst century, even though the year is 2014. The referrent here is
twenty-one centuries (ie 2100), of which twenty have been wholly allocated, and the current one is the
twenty-�rst. The months are numbered from 1 to 12, representing an ordinal count: a date in the �rst
month means that no month has passed, and the current month is the �rst, has not ended. Likewise,
the 18th day, means that seventeen days have gone and this is part of the eighteenth.

One gets some rather mixed meanings from people who do not appreciate this. Your sixtieth year
ends on your sixtieth birthday. One gets it right with `baby's �rst year', which ends when baby turns
one. But by the time one gets to the other end of life, a person who is 87 years and 10 months of age, is
in her 88th year, not her 87th.

Likewise, the `eleventh hour', supposed to represent times just before noon (eg 11:59), actually rep�
resents times between 10:00 and 11:00. An ordinal referrent ends the period, not starts it. So the hour
ending at 12:00 midday is the `twelfth hour'.
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The usual debate about `when the century ends', is also simple: the structure is an ordinal, so the 20th
century ended at the change from 1999.11.30 to 2000.00.00 in the Mayan style. In the rest of the world,
one would change from 1999.12.31 (ie completed the twelfth month and the 31st day), to beginning a
whole new package: the �rst day of the �rst month of the �rst year that the next round point in 00.00.00
is 2100.00.00.

2.2 Multiples and Divisions
The great diversity of fraction-schemes against the simple notion of counting, and the lateness of the
appearance of the decimal numbers, might call into mind what is going on here.

The multiples and divisions are handled in di�erent parts of the brain. Butterworth[But99] gives
accounts of various patients whose brain has been damaged in di�erent parts, and have lost the facility
of one, without the other function. Also, one is lead to conclude that while only one part of the brain is
used to make multiples, many di�erent formations are used for making fractions.

Multiples have a very simple construction. Twenty units make a score, and one has a number of
scores, and a number of units. The number of scores is then counted, and the process is repeated until
there is only remainders. A number is then a series of remainders, eg 2014 becomes 100 score and 14, and
100 becomes 5 score and 0. In turn, 5 becomes 0 score and 5, one has then divided 2014 into remainders
against 20 as 5

20
0
20

14
20 ;

The division measures centre around weight, particularly bullion-weight.

Egyptian The most enigmatic fraction system is that of the egyptians, who preferred to use a series of
unit fractions, which we might write 1+ 1

a+ 1
b in a style closer, of the form 1 'a 'b. The multiplication

tables such have come to us are reductions of 'a 'a into di�erent numbers. For example, '3 '3 might
be written as '2 '6. Gillings[Gil82] gives an authoritive account of the arithmetic associated with
these numbers. They were certainly used well into the time of the Roman empire, where '3 '8 is
used for 5 uncia 8 drams.

Sumerian The Sumerian system for weights is to divide a measure of three-score[Neu69] into alternating
measures of six and ten. A weight of a talent, is divided into 60 mina, of 60 shekels, of 60 berah,
of 3 barleycorns. In e�ect, one uses the division of weights as a kind of fraction. It spread into
astronomy, because its toolkit was more extensive than other number systems in use, and has come
to us in that form. The actual calendar and angle system are a later mishmash.

Greek Greek fraction is to divide the measures into smaller grains, and give a ratio of grains. A fraction
like '3 '8 might be written as 11 parts, where 24 make the whole. Such fractions were used by the
Mayans too.

Roman Roman fractions are by weight, where the unit is understood. The foot, pound, and hour, are
divided into 12 uncia, each of 8 drachms of 3 scruples, and so forth. A division into 16 digits, in
the manner of the foot is also known. The uncia is also divided, originally into six solidus1., each
of 24 carats2. Such fractions are still in use.

Latin Latin fractions are added fractions, which we deal with in the next subsection. In modern terms,
it might be regarded as a series of continued numerators. A foot is divided into 12 inches, and
an inch is divided as if it were the unit, to 12 lines into a binary fraction. One can write added
fractions as a series of adjacent fractions, like 3 3

12
3
8 . Fibonacci used this kind of fraction in his

Liber Aceri.

Radix A radix-fraction is a sub-multiple. The idea here is that if you divide a pound into smaller
measures, one should count the smaller measures, and a column would make a pound. Such
divisions do happen3. Radix-fractions �rst appear in the form of using primes, seconds, and thirds,

1This unit survived longer in the Moorish lands as a metkal. It's about the size of a shilling coin.
2A carat represents a carob-seed, which has a weight of about 200±10 milligrams. This weight is normalised in di�erent

systems, and eventually `internationalised' to 205 mg, and then 200 mg. A carat also represents a 24th part of measures:
the Turkish ell was divided into 24 carats, and the carat as a 24th pound, represents a weight required to give 24 carats to
the solidus.

3A greek mina is divided into 100 drachma of 6 obols. A count of 250 drachma makes then 2 mina and 50 drachma.
The romans absorbed the drachma, but �tted it into their division system, so a drachma is an eightþof an ounce.
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as far as needed. The C.G.S. fraction system is based on this kind of division, such as the Ångström
being a tenth-metre, that is, the tenth decimal division of the metre. The radix-point separating
units from the primes, seconds, etc, is a later division.

2.3 Added Fractions
The prototype of measure is a series of nested or added fractions, each subsequent fraction being a
division of the previous measure. A stone is divided into fourteen pounds, and a pound into sixteen
ounces. A weight given by example, as 19 st, 11 lb, 12 oz, has no single unit or number. One could write
this kind of fraction in the style of added fractions, being 19 11

14
12
16 stones.

One does not have to suppose that the added fraction has a root4 immediately after the �rst number.
One could as readily suppose 19 11

14 ; 12
16 pounds, or a similar construction of ounces. Such measures are

superdivisions.

2.4 Numerals and Zero
A system of numerals allows one to distribute stones on a number-board, representing the series of
remainders of the count. One needs to know for each symbol, of where to place one or more stones,
either relatively or absolutely. Many cultures still use a diverse range of symbols, and even the spoken
language di�ers from the numeric forms.

Systems based on tokens equate to placing a stone in a particular column. For example, the symbol
M corresponds to placing one stone in the thousands column, while a C places it in the hundreds column.
Such a notation, written on the stones themselves, might allow the stones to be placed in a bag, and
correctly unpacked. Such a modern example includes coins, where an amount can be extracted from a
purse and spread correctly on a table.

A di�erent system uses a series of remainder-staves, which are ordered from the last (highest) to the
�rst. These remainder-staves are usually called digits5. Note that digits are not the sort of thing one can
bag: the number CIII might well be bagged, but the order of digits `103' needs to be kept. Stones with
`1', `0' and `3' by themselves might be arranged in several di�erent ways. The modern digits descend
from the subcontinent, through the moors.

A third system consists of a pair of numbers, a remainder-sta� and a column-sta�. Such might be
rendered as ligatures. Instead of writing 103, one writes, eg 1C 3I, meaning, one in the hundreds column,
and three in the units column. Such a system might be used in stamps, where an amount of $18.50 is
made of a ten-dollar stamp, an eight-dollar stamp, and a �fty-cent stamp. Such a system is used in the
far east, and english numbers6 were in the style of iii C v for what we write 365.

The Sumerian system is a series of deal-staves. The �rst two staves represent a number, while
subsequent staves represent the numerator of added fractions, of alternating divisors of six and ten. The
staves for the six-divisors are written as horizontal wedges, while the ten-staves are vertical staves. One
might in a more modern context, use the letters A to E to represent 1/6 to 5/6. The digits 1 to 9 serve
for the ten-fractions 1/10 to 9/10. One would then write decimal 15 as `A5'. A number like 1C is not 90,
but 13/6.

Zero, then has multiple meanings. The word comes from `empty', and is usually read as an empty
column. But if one is placing the columns in the symbol, there is no need to represent an empty spot.
The roman CIII does quite nicely without the need to represent no element of the tens-column. It's only
really needed when one is giving the column-content in sequence.

The Egyptians certainly did understand zero, and had a rune for it. But it is not needed to show that
one has no ten-cent pieces, rather that one had no money at all! That is, zero represents the number we
write as `0'.

When one has a position-string notation, a zero or some device is needed to show empty medial
columns, such as the 0 in 103, along when the root column itself is empty. Such is needed, for example
to show 1030. Because we know in the sumerian system, such outside-spaces appear to make the number
smaller (ie 005 is 0.05), the system is a division system, such that 1C3B lies between 1C3 and 1C4. 1C
is 11/2 but 01C is 1/40, that is, 1/60 of 1C.

4Latin radix means root.
5Digit is from the latin for �nger or toe. A foot consists of sixteen digits.
6English numbers, until the plague of digits, were written at M=1200, C=120.
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A di�erent kind of zero might be used to show that some medial unit is zero, while some measures
on each side are non-zero. It's like writing ¿5 - 0 s 31/2 d. It's sometimes written as a dash, especially if
the data is in columns. A similar example is like writing a dash or pair of dashes after a neat number of
dollars (eg $18� ).

Setting zeros on the o�-side of the number, such as 0103, or 0.1030, does not change the size of the
number. Instead, its presence might be taken to mean a four-digit number is expected, or that the error
in the quoted value is a unit in the last place (ie .1029-.1031 rather than .102 to .104).

A `semi-medial zero' is one where while no column is empty, the columns consist of rows, and there's
a full column's worth of cells missing. The sumerian number for 11 is A1, while the one for 601 is A
1. Here both the unit of the 60's column, and the tens of the 1 are absent, yet they are on di�erent
columns, eg 1

0 ,
0
1 against 1

1
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Chapter 2

Electromagnetism

Legal metrology provides the base units for a system of coherent units. For example, the de�nition of a
square foot as the area of a square of side one foot, does not imply that it is 144 square inches.

3 Electromagnetism with six dimensions
The great diversity of systems in electromagnetism might be correctly read if one supposes six base units,
some of which are converted into numeric constants. But comparing the resulting equations allows us to
reconstruct these constants.

One can simply restore these constants. The relation of �ux Ψ and the enclosed charge Q is in SI
Ψ = Q and C.G.S. Ψ = 4πQ, to get a single equation Ψ = QS. One can even read S as a solid angle.
Using equations like those that Heaviside extracted from Maxwell's work, one can even prove that two
such constants su�ce. This is the approach followed by Leo Young[You69]. Such an approach might well
work for those who have to deal with two distinct systems, but it o�ers little explanation on how such
might have risen.

The following equations mean to give both a logical source for the quantities, and a de�nition that
we might apply six-dimensional analysis to.

3.1 Radiant Fields
Like light and gravity, electrics and magnetics might might be treated as a radiant �eld. What this
means is that the source radiates �ux-particles, which travel outwards. The number does not change,
but the surface area increases as the square of radius. Such is the common inverse square law.

Light and heat are scalar �elds, which means that as �ux strikes a thing, the load is o�-loaded, but
no hint of direction is passed. Gravity, electricity and magnetism are vector �uxes, which means the
o�-load also moves the destination towards or away from the source. Sources are charges, the e�ect of
�ux is �eld.

Electricity Magnetism

Charge F = `Q'q/γεR2 F = `P 'p/γµR2 R is radius-vector
Field F = `E'Q F = `H'P
Potential E = ∇`V ' H = ∇`U ' ∇ = grad
Capacitance V = `C'Q

Flux density `D' = Q/γR2 `B' = P/γR2

Flux `Ψ' = D · a `Φ' = B · a a is area normal
Perm'ity D = `ε'E B = `µ'H permittivity, permeability

One can substitute into the last equations, the de�nitions of D and E to get the �rst equation.
Although it appears that one equation is redundant, the �rst equation creates a concept of charge,
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governed by an inverse-square law, and an arbitrary constant. This constant is partly decomposed in the
following de�nitions.

3.2 Dipoles and Polarisation
A moment of X is the integral over the elements of X, of some the coordinate of X and its element.
Speci�cally, ξX =

∫
rdx. When there is a net value of X, the moment changes with coordinate. However,

it is possible to remove this dependence.
Momentum is the rate of change of moment, or τξM . Because the coordinate system is not changing

too, one only sees an intrinsic measurement of a moving object, speci�cally τξM = Mv.
Another coordinate-free moment happens when the integral over X is zero, ie

∫
dx = 0. While the

total sum of quantity X might be zero, there is a spacial distribution, and this produces an intrinsic
vector.

Electricity Magnetism

Charge dipole `p' = ξQ `j' = ξP moment of charge
Polarisation `P' = %p `J' = %j % is space-density

e/m ic dipole T = D× `k' T = B× `m' `T ' = ξF is Torque.
e/m isation `K' = %k `M' = %m electrisation, magnetisation

Susceptibility K = `χe'E M = `χm'H

The vector K `electric potential' is an example of a division of a quantity. This is divided from Ei in
the way Hi gives M. K was formerly used as an alternate symbol for the vector we call E. The partition
also causes problems when the equations like H = B, due to µ = 1.

Although natural dipoles exist, the presence of a �eld can cause a movement or displacement of charges
in the material, which serves to reduce the �eld inside the body. However, the induced polarisation is
�xed by an intrinsic property of the material, being the susceptibility.

The induced �elds are proportional to the torque-producing densities as de�ned above by the following
relations. The constant β in the following equations arise from geometry. An induced charge-dipole P is
a direct measure of the induced �ux density which is causing it. It is this that makes the vector D come
to be called displacement.

P = `β'Di J = βBi K = βDi M = βBi

Because susceptibility is de�ned as a ratio of vectors, the derived relation εr = 1 +χe/β, gives where
γ = 1, then εr = 1 + 4πχe, and where β = 1, then εr = 1 + χe.

The relation γ = 4πβ derives from Gauss's �ux law. Speci�cally, the net �ux through a surface
is directly proportional to the charge enclosed in the surface. A very thin surface on the surface of a
dielectric medium gives the charge P ·A, against the reduction in the �ux, D ·A. In the simple case,
the �ux is simply D ·A. The enclosed charge is derived from the surface density and area σQ ·A.

One can �nd from an enclosed charge Q and the �ux through the surface, Ψ, that Q = βΨ. For a
point charge q, one might take a sphere of radius R. The surface is then A = 4πR2. the �ux density is
D = Q/γR2. Because the vector area is parallel to D, the total �ux through this surface is Ψ = D ·A,
or Ψ = 4πQ/γ = Q/β, whence γ = 4πβ.

Some systems set γ = 1, leaving β = 1/4π. More recently, systems follow Heaviside's advice and set
β = 1, making γ = 4π.

3.3 The Electromagnetic Link constant κ
Electrics and magnetics are linked by way of the electromagnet. Speci�cally, the model of magnetic
charge fails to explain how an electromagnet works, and far from radiating from one source to another,
magnetic �ux forms loops. An ordinary magnet appears as a magnetic dipole, because the inner parts
of the magnet can't be reached.
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A magnetic dipole of the measure m, can be produced by an electrical current I �owing around a
vector-area a, by the new relation m = `I'A. The current is �owing in a closed loop. Where A is a
surface bounded by the closed loop, the integral A =

∫
nda, where n is a unit vector vertical to the

element da1.
The current in the loop is called Ampere's current. A similar induction arises by way of faraday's

induction by way of a potential produced by a changing �ux.

Electricity Magnetism

Current `i' = τQ m = `I'a ampere current
Potential E = ∇`V ' `v' = τΦ faraday potential
Power τW = V.i τW = v.I (equal)
E-M Linking i = I`κ' v = V κ τW = iv/κ = IV κ

By Leo Young, κ = 1/U , where U takes the form of the unit `turn', as in `ampere-turn'. In e�ect,
a current of i �owing through a coil of t turns produces an ampere-current of I is equal to i current
by t turns. Likewise, a real voltage V is manifest by a faraday potential v through several turns. But
`volt-turn' is rarely heard.

A distinction is to be made between the Sommerfeld and Kennelley magnetic dipoles. The Sommerfeld
system is the one widely used, but it is not impossible to have both included in the set of quantities.
One associates magnetic dipole with either J or M. One just has to be wary of reading texts.

Kennelley Sommer�eld

Dipole j = µIa m = Ia

A similar distinction across electricity gives Ψ′ measured in Volt metres. It is rare to be met, but
in Alan Phillips's Electromagnetism (the text the author was taught through), the unit of �ux is E · a
rather than the more common D · a.

3.4 The new Electromagnetic System
The de�nitions by magnetic charge no longer work. Instead, one has to devise a new set of de�nitions.
The following table shows the de�nitions of the charge, �eld, and �ux-like elements in electrostatics,
magnetostatics, and electromagnetics.

Electrostatics Magnetostatics Electromagnetics
`Charge' F = `Q'q/γεR2 F = `P 'p/γµR2 λF = 2µ`I'i/γR
constant `Kc' = 1/γε `Km' = 1/γµ `Ka' = µ/γ

`Field' F = Q`E' F = P `H' λF = `B'× I
`Flux' `D' = Q/γR2 `B' = P/γR2 `H' = 2I/γR
perm'ity D = `ε'E B = `µ'H H = B/`µ'
Potential E = ∇`V ' H = ∇`U ' B = ∇× `A'
Electrokinetic Potential `Ek' = τA

The equation λF = 2µ`I'i/γR is used to de�ne current, particularly in the form λF = 2KaIi/R.
It is this equation, and a similar one that we shall derive, which forms the basis of the electromagnetic
velocity constant.

1If one imagines the loop to be covered with a second surface, the total surface is then a solid, which has a volume.
Since volume is calculated as the moment of vector-surface (ie V = ξ ·A), and volume is independent of coordinate, the
vector-sum of a closed surface A =

∫
da must be zero. Dividing the surface into a �xed part, and a variable part, the size

of the two parts must be of equal magnitude and opposite sign. Thus the variable part has a constant vector area.
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3.5 The Eight Vectors
A brief table showing the dimensional placing of the quantities is in order. In stead of using the standard
LMTQ dimensions, which is prone to produce square roots and divisions, the values of EL do not. In
order to do this, we need to suppose that the electric and magnetic constants are the product and quotient
of two new constants.

`$' =
√
εµ `η' =

√
ε/µ ε = $η µ = $/η

Since γ = 4πβ, we suppose these have the same dimension too.2. The equation for E is E = Q/γεR2,
or dimensionally, E = Q/L2β$η. Since we mean to eliminate divisions, this can be written as Q =
EL2βη$. Force is EQ = E2L2βη$. One can solve for magnetic charge P = Qm, as Qm = EL2β$.

The arrangement across the table are by length operators: ∇, ξ, and the various density parameters
λ, σ and %. The remaining variables appear in the �rst column. L0 contains eight vectors.

The �rst four are extrinsic �eld-like vectors. The group contains �elds, �uxes, and potentials. The
second group of four are intrinsic dipole vectors, the group has charges and charge-distributions and
�ows.

L0 L1 L2 L3

E E V

Eη H U

Eη$ D Ψ
E$ B A Φ

Eβη$ P Q p
Eβ$ J Qm j
Eβ K k
Eβη M I p m

E2βη$ w F T, W

3.6 The Rule of Substance
The process of rationalising formulae involves shifting a factor 4π around. Since this is not in the
standard dimensional analysis, one can not use that form. Instead, one needs to extend the dimensions
to let this happen. We have done this here.

The table above shows the bulk of the electromagnetic quantities, in three groups. The �rst group
contains �elds, �uxes and potentials, and their densities. None of these represent actual substance, and
all of these have no factor in β.

The second group contains charges, dipoles, polarisations, their densities and moments. All of these
in the presence of a �eld, might produce force or torque, and are therefore a kind of substance. Note
that magnetic charge is a substance were it to exist. All of these have a factor of β.

The third group contains the mechanical quantities with a quantity in M . These all represent sub�
stances, their densities and moments, and likewise contain a factor β.

β−1 Kc Ka Km R,Z L
β0 ε µ Zw
β1 χe χm G Cap

2When area is no longer considered as a direct measure of L2, these have di�erent dimensions, that γL2 = β area. But
we suppose here that area is L2
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4 Electromagnetic Theory
No new quantities are introduced in this section. Instead, it is a discussion on the uni�cation of electrics,
magnetics, and light from separate �elds into a uni�ed theory.

4.1 The Electromagnetic Velocity Constant κ/$
The measure κ is a direct connection between electricity and magnetism.

One can measure this by experiment, by measuring the same e�ect by electrical means, and then by
magnetic means. It can also be set by theory. Wilhelm Weber and Rudolf Kohlrausch �rst measured
this at np[mm/s]3.107e10.

The �rst case to consider is Ampere's law, giving λF = 2$`I'i/γηR. This is Ampere's law, with
µ = $/η.

The second case is two parallel wires, charged to λQ. The value sought is so that the force per length
λF is the same size. The way to �nd the force is to �nd the �ux, of the �rst wire at the second wire. A
cylinder centred on the �rst wire, of radius R and length L is used. No net �ux �ows over the end pieces,
so the total �ux is Ψ = λQL. The �ux density is D = σΨ = λQL/2πβLR. Since λF = EλQ, one �nds
directly

λF = λQλQ/2πβεR

One now sets the forces equal, and evaluates γ = 4πβ to get:

λQλQ/2πβεR = µIi/2πβR

(λQ)2/$η = $I2/η

Because I is a magnetic quantity, one must convert it to electric by way of I = i/κ = q/κt. Likewise,
λQ might be written q/l. If q is set equal, then l and t vary, such that for example, λQ is not 0.001
Vb/ft, but 1 Vb/1000 ft. Likewise, t is the time a current takes to deliver 1 Vb, eg 1000 Vb/sec = 1 Vb
/ 0.001 sec. This allows us to eliminate q.

(q/l)2/$ = $(q/κt)2

q2/l2 = $2q2/κ2t2

l/t = κ/$ = `vem'

Since $2 = εµ, one can write εµv2
em = κ2. Weber and Karlsraus measured the value of vem from

electrical and magnetic �elds.

4.2 Maxwell's Equation
The modern way of de�ning electricity is a similar �ux/�eld approach, but uses point vector functions,
rather than large-scale rules. The usual statement of Maxwell's equations are those of �ux, and Fara�
day's and Ampere's law. These are shown in bold face below. But these by themselves can not de�ne
electromagnetism, and the other equations are usually inserted by way of aside.

Electric Magnetic
�eld F = QE λF = I×B/κ
Perm'ity D = εE B = µH
�ux ∇ ·D = %Q/β ∇ ·B = 0
Faraday Law κ∇×E + τB = 0
Ampere law κ∇×H− τD = J/β J = %vQ
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The start of the push for `rationalisation' began with authors who started with equations like this.
Oliver Heaviside was the earliest recorded. In essence, one sets β = 1 and thus γ = 4π. One does not
completely banish the `eruption of 4π'. but in a rationalised system, one �nds 4π connected to spherical
symmetry, and 2π to circular or cylindrical symmetry.3

4.3 Electromagnetic Waves
The solution to Maxwell's equations in free space is that of a wave. One �rst removes J and %Q from
the equations.

∇ ·D = 0 κ∇×H = τD

Using the perm'ity equations, one reduces Faraday's and Ampere's law to.

κ∇×E = −µτH κ∇×H = ετE

κ(κ∇×)∇×E = −µτ(κ∇×)H κ(κ∇×)∇×H = µτ(κ∇×)E

κ2(∇×∇×E) = µετ2E κ2(∇×∇×H) = µετ2H

The double-curl (∇ × ∇× simpli�es to ∇(∇ · V) − ∇2V The �rst term is a zero-vector, so the
equations simplify to a wave equation. The speed of the wave is found by moving all the constants to
the left-hand-side.

κ2∇2E = µετ2E κ2∇2H = µετ2H

This gives c2 = κ2/µε or $ = κ/c.
Maxwell compared the electromagnetic velocity constant as measured by Weber and Kohlrausch, and

compared this with the value of light as measured by Fizeau, 3,15 · 1010 mm/s, and concluded that light
and electromagnetic waves travel in the same medium (ether).

Henreich Hertz conducted experiments with rotating magnets, which would produce undeniable elec�
tromagnetic waves, to show that electromagnetic waves have the properties of light. It is also possible to
show that properties of light, such as Snell's law of refraction, are re�ected exactly from electromagnetism.

4.4 Poynting's Vector
The �ow of energy in electromagnetic �elds is given by a vector found by Poynting and by Heaviside. It
can be derived from Maxwell's equations as follows:

κ∇×E = −τB κ∇×H = J + τD

Taking the dot-product of H over the �rst, and E over the second, gives

κH · (∇× E) = −H · τB κE · (∇×H) = −E · τJ + E · J
The di�erence between these equations gives H · (∇× E)−E · (∇×H) = ∇ · (E×H).

4.5 Snell's Law

5 Bohr's Atom
Bohr's model of the atom shows the interface between quantum and classical physics. It is a very good
approximation of the Hydrogen atom, and similar ions with one electron. Many of the modern constants
can be understood by way of a discussion of this model. The model does not invoke relativity.

One should note that the failings of the model is one of the reasons that the quantum theory has
moved onto more advanced theories including relativity.

Here, we write ε = ηκ/c, and µ = κ/ηc.
3One �nds that the earliest attempts to write gravity in rationalised forms also follow the construction of Maxwell-like

equations.
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1. F = cZe e /γηκr2 Electrostatic �eld
2. F = mω2r = mv2/r Centripedial or Hubswingth
3. E = hf = hc/λ Planck's constant
4. N h = 2πmvr Bohr's quantisation

N is a quantum number, takes the form of an integer.
The equality of forces gives

Z e2c/γηκ = mv2r

5. = N hv/2π Bohr's quantisation (4.)
6. = N2 h2/4πmr Second application.

Somerfeld's Fine Structure Constant is now de�ned from Equation 5.

7. v/c = 2πZe2/N hγηκ Equation 5.
= (Z/N) e2/2βηκh

8. k = 1/α = 2βηκh/e2 Fine structure hundred = 137.036
= γηκh̄/e2 in gamma-form.

9. v = Z/N c/k Atoms limited to Z > k.

The value α = 1/k is Somerfeld's Fine Structure Constant, with allusions to the �ne structure of
spectra.

The implication of (9) above, is that electrons in an element Z=137 would be moving near light speed.
When all things are taken to account, the value which can permit N = 1 (ie 1s orbitals), is Z=173.

The radius of the atom is found from equation (6.), as

r = N2h2γηκ/4π2Ze2mc2

= (N2/Z)βηκh2/4π2e2mc

10. r = (N2/Z) kh/2πmc Bohr radius when N = Z = 1
11. vr = (N)h/2πm Quantum of circulation

The Bohr magneton is de�ned in terms of an electron in the �rst orbit. The relation ism = I ·a/kappa.
The current at a point is made up of the same electron passing it many times, that is I = ev/(2πr). The
ares is circular, ie πr2, and µ = κ/ηc.

The Gyromagnetic ratio gives a frequency of procession, when a magnetic dipole is placed in a �eld
B.

The magnetons are more exactly known in terms of the `magnetic mass' as de�ned below, then in
terms of the magnetons. In practice, one describes these in terms of bohr or nuclear magnetons.

The Zeeman e�ect is a splitting of lines, when a magnetic moment is put in a magnetic �eld. Because
each orbit contains a `spin-up' and `spin-down' electron, these electrons are more or less susceptible to ion�
isation when a magnetic �eld is present. This causes spectral lines to split slightly. The Zeeman-splitting
constant is proportional to the bohr magneton, the minor e�ects are carried across by numbers. The
Zeeman e�ect was the �rst indication that something more complex than what is explained in Bohr's
atom.

The Landé g-factor is given as a variance from the classical magneton or gyromagnetic ratio,

Somerfeld Kennelley
12. µB = evr/2κ = evr/2ηc Bohr Magneton

= N eh/4πmκ = N eh̄/2mηκ
13. `mm' = eh̄/2µ �Magnetic Mass�
14. kz = e/4πmcκ = µB/hc Zeeman splitting

12



15. f = B`γ̄' = 2πω Gyromagnetic Ratio.
γ̄ = µ/h̄

16. ge = 2γ̄m/e = 2µm/eh̄ Land e G-factor

The kinetic energy of the orbit is equal to what is needed to free it, so

17. E = 1
2mv

2

= Z2/N2 mc2/2k2

18. E/e = Z2/N2 mc2/2k2e Ionisation of Bohr atom

Rydberg's constant uni�es the sparse lines of the Hydrogen atom, and similar single-electron ions.
The original series are given as follows. Rydberg discovered the general series to merge all these, based
on wave numbers. A and B are integers.

Balmer Series 1885 A=2 visible
Pashen Series 1908 A=3 infrared
Lyman Series 1915 A=1 ultravoilet
Brackett Series 1922 A=4 infrared
Pfund Series 1924 A=5 infrared
Humphres Series A=6 infrared

19. Rydberg constant 1/λ = RxZ
2(1/A2 − 1/B2)

In the Bohr model, the Rydberg constant is explained by a transition between levels of the atom, the
rydberg constant comes from the Planck relation.

hc/λ = (E(A)− E(B)) E(A) = Z2/A2 mc2/2k2

Rx = E/hc = m′c/2k2h m' = Mm/(M +m) (m orbiting M)
20. R∞ = mc2/2k2h Rydberg Constant (in�nite mass)

1/λ = (1/A2 − 1/B2)Z2(M/(M + 1))R∞ Wavenumber from M, Z, A, B

Here, m is the reduced mass, being m′ = Mm/(M + m) = m −m2/(M + m). When M is in�nite
then the reduced mass becomes m′ = m. But it was that it correctly varies that convinced Rutherford
that Bohr was indeed on a correct model. Rydberg's constant is now evaluated for an in�nite charge,
the �nite case is found by the relation Rx = Rinf(M/(M + 1)), where M is the mass of the nucleus in
electron masses.

Morsley found in 1913, that the frequency of the farthermost lines of various atoms. The resulting
lines showed that Z in Bohr's atom increased in line with the position in Mendeleev's periodic table:
that is, the order in Mendelev's table comes with the central charge in Bohr's model.

The Photoelectric e�ect is the �rst indication of quantised light. Speci�cally, light will not ionise an
electron until its wavelength is long enough. This wavelength is f = E/h. This gives rise to the particle
nature of light.

De Broglie suggested that particles behave as waves too.

21. λ = h/p = h/mv Wavelength
22. f = E/h frequency

v = λf velocity

In the Bohr atom, the electron in its orbit is a standing wave. The idea of standing matter-waves in
potential wells is the idea behind Schrödinger's model.

9. λ = (N/Z)kj/mc de Broglie wave
10. 2πr = (N2/Z)kh/mc Orbit Length
23. = Nλ In de Broglie waves
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The Crompton e�ect is the scattering of light at near the speed of light, that v in eqn 21. is the same
as light. The speed is reduced by the cosine of the de�ection angle.

24. λ = h/mc Crompton wave length

The model of the classical electron supposes that its its energy of mass comes from the electrostatic
energy against capacitance. The ratio of the classical electron radius to the bohr orbit is k2.

E = mc2 = e2c/γηκ r

r = e2c/4π βηκ mc
25. re = h/2πkmc Classical Electron Radius

The measure of thompson scattering derives from the classical radius. The scattering cross section is
de�ned as Is/Io. where Is is measured in solid angle (solid radians), and Io in area. The unit is in area
per solid angle. In thompson scattering, it is the slow-moving electrons that do the scattering.

26. s = 8
3πr

2 Thompson Cross Section

Schrödinger takes de Broglie's wave model, and uses it to solve for standing waves of electrons in
the Bohr model. In the equation below, V represents the kinetic energy, and Ψ the wave function being
sought. The constant h̄2/2m is Schrödinger's constant.

27. ih̄τΨ(r, t) =
[
−h̄2

2m ∇2 + V (r, t)
]

Ψ(r, t)

6 Gravity
Newton's gravity can be modeled on a radiant �eld. The following equations show the inverse square
law, and the derived modern form. In this form it serves well enough to place objects in orbit and on
the moon and Mars. Although Newton's G is known imperfectly, the gravitational tractive GM is quite
well known.

Classical Form F = `G'mM/r2

Field F = m`g'
Potential g = ∇`Φ'
New style ∇× g = 0 ∇ · g = −4πGρ
G-tractive `GM ' = GM

gravitoelctric M = `þ'Q F = GMM/R2 = QQ/γεR2

Gravity at the scale of the solar system is essentially non-relativistic, to the end that over hundreds
of years, no one has saw �t to impose a model of motion di�erent to what is felt on the earth. Moreover,
even the fastest of objects in the solar system - Mercury - the relativistic e�ect is so slight that it is listed
as an anomaly.

Although for practical purposes, one can treat gravity in terms of the newtonian model, neither of
these are relative to a constant speed of light. One must add additional elements of the order of 1/c2 to
preserve the relativity. Such is so slight that even the more sensitive meters are only just able to select
this measure.

6.1 Co-Gravitation
As electromagnetism was prototyped on gravity, it comes about that gravity is reformulated on electro�
magnetism. Oliver Heaviside �rst demonstrated that, where the �eld of gravity moves at a �nite speed,
then it behaves akin to the electric �eld in electromagnetism.

Einstein's general relativity gives formulae similar to Heaviside's, but include extra terms due to
relativistic elements. In this theory it is normal to deal with four-vectors, which we do not propose to
do here. None the same, some of the terms have an additional factor of 2 or 4, which is not shown here.
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Table 2.1: Gravitational EM Units

þ−2 þ−1 þ0 þ1 þ2

β−1 Ke G

β0 µ D E g ε
H B K η

V Φ

β1 P K
M J
Q M j d

Ω, H A, C W, J V, Wb, S, H

The constant `þ' =
√
Ke/G is the ratio between electrostatic charge and gravitational mass, such

that if the mass is divided by þ, the same force arises from electrostatic charge.
When M = Qþ, one can then �nd g = e = E/þ, and various

∇ ·D = ρQ/β ∇ · d = ρM/β d = M/γr2 = þ2b
∇ ·B = 0 ∇ · b = 0 b = g/c = K
κ∇×E + τB = 0 ∇× e + τb = 0 e = g = F/M
κ∇×H− τD = J/β ∇× h− τd = j/β h = cd = þ2e

Because the model is surprisingly good, although not perfect, one might suppose that c is promoted
from an electromagnetic quantity, to a property of space, and that the carriers of electric �eld and of the
gravity �eld, are massless particles that ride on the space-time conversion factor.

One can see that the relation between Electric and gravity is Qþ, Dþ, Hþ, E/þ, B/þ, 1/γG = εþ2,
µ/þ2.

In any case, one might be tempted to follow the fpsc practice of setting.

Inverse square law F = cQq/4πr2 F = cMm/4πþ2r2

6.2 Quantum Gravitation
The units of Stoney and of Planck, are more simply written in terms of the values given above. Stoney's
system was implemented before the quantum constant h̄ was discovered. The units represent the scale
of quantum gravity.

Length Weight Time Charge
Stoney e/γþc eþ e/γþc e

Planck q/γþc qþ q/γþc q = e/
√
α =
√
γh̄

When rationalising these systems, one should replace γ with β, but keep þ, c and the charge unit.
The e�ect of doing this causes the length and time unit to increase by a factor of 4π. But one notes
that the units of h̄ is correctly L2M/TΘ, where Θ is a measure of angle. So the length changes from a
radian-length to a double-wavelength.
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Chapter 3

Tables

7 A Story of Units
The proto-electric and proto-magnetic systems use the newtonian inverse-square-law, but because these
systems are de�ning a new constant, it is possible to set these to unity. That is, the proto-electric
equations have γ = ε = 1 and the proto-magnetic equations set γ = µ = 1.

When one uses proto-electric units for electrical quantities, and proto-magnetic units for magnetic
quantities, one is just using the ordinary mechanical system, eg c.g.s. or f.p.s.. It's only when you
implement the conversion factor κ, and start having electrical units for magnetic quantities, and so forth,
that one starts to talk of `electrostatic' and `electromagnetic' units, or e.s.u. and e.m.u. The units are
then written, eg c.g.s.e. or f.p.s.m.

The use of a mix of e.s.u. and e.m.u. make a system that is now-days called the gaussian units,
although this is an honour-name, since Gauss was long dead by the time Maxwell wrote his book on
electromagnetism. Maxwell himself gives the dimensional analysis of these units.

The underlying relation is that the gaussian preserves the pre-existing proto-units, and allows an
indirect scale, by way of setting κ = 1. The relation to be observed is εµc2 = κ2, of which any two might
be set to unity, and the third one evaluated.

The e.s.u. sets ε = κ = 1, the e.m.u. sets µ = κ = 1, and the gaussian sets ε = µ = 1. A
fourth solution, explored severally by Fitzgerald, by Kennerley and by myself, gives εc = µc = 1, which
eliminates the separate use of electric and magnetic units. The use of this fourth scale did not take on
because its units do not match the pre-existing e.s.u. and e.m.u scales.

7.1 Practical Units
The units de�ned by early experimentalists, was to de�ne resistances in terms of lengths of wire, and
voltages in terms of voltaic cells. This lead to units like a resistance-unit equal to ten yards of number
15 wire, or the Latimer-Clarke cell.

Agreement was made that while the previous practice would continue, one would quote the measure
in the decade e.m.u. nearest a pair of units: the Daniell's cell, and the Siemens resistance. A good deal
of names were discussed before a list was settled on. An Ohm is then 1.063 Siemens units, a Volt is
near a daniels cell. One derives an ampere as a volt per ohm, a coulomb as an ampere-hour, a farad as
coulomb per volt, a watt as a volt by an ampere, and a joule as a watt-second. The unit called henry,
was originally a quadrant, since it represents 1 · 107 metres or a quadrant. Later it was called a secohm
and then a henry.

The 'international' part comes from agreement that nations would replace their own legal implemen�
tations of the volt and ohm, by ones of common agreement. For a while, the ampere, de�ned in terms
of the silver faraday, had some currency. By 1947, one could implement the e.m.u. de�nition directly at
this scale, and the international practical de�nitions were depreciated.

Because the volt-ohm-second do not implement a full system of units, one could pretty much use it
with whatever local units. `Volts per inch', for example, is not uncommon, and is not so much a mix of
SI and fps units, but a free-standing electric system and the local measures.
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Of greater interest is the set of units called c.g.s. practical, or `Hansen' units. The practical units
were used of the electrical units, and the magnetic units were the straight unmodi�ed c.g.s. e.m.u. In
1930, the IEEE were coerced into approving names for four of these: gauss, maxwell, oersted, and gilbert.

There was then a proposal to name the e.s.u. by the pre�x `stat-', and the e.m.u. by the name `ab-'.
While widely used, it was never sanctioned by an o�cial body. However, with rationalisation, one should
either avoid these names, or also use additional su�xes to deal with the 4π factor.

7.2 Rationalisation
Rationalisation is the term used for converting from a γ = 1 to β = 1. Such a move is logical when one
starts electrical theory from something which resembles Maxwell's equations, as Oliver Heaviside did.
However, one can see that if E2βηκ (ie units of weight and force), is to be preserved, then there are
many di�erent ways of installing the 4π into di�erent values.

The method followed by Heaviside is to keep ε and µ unchanged, which makes the size of the charge
unit larger by a factor

√
4π and the unit of potential smaller by the same factor. Heaviside suggested

reforming the practical units, by now thought of as c.g.s. units, by similar factors, so that the value
of µ = 10−9 H/cm. He then discusses in the same reform, one could equalise the powers to the same
number, eg setting the new joule to 109 erg.

Lorentz followed Heaviside, both in using units that di�ered by a factor
√

4π, and by using Maxwell's
equations as a starting point. But he uses a symmetric system similar to Maxwell's system, complete
with ε = µ = 1.

One could, as with the response from the British Association and others, keep the bulk of the e.m.u.
and the various quantities, if charge, coulomb's constant, and ampere's constant, were kept identical,
and the size of ε = 1/4π and µ = 4π.

One can suppose a third rule, which sets ε = 4π and µ = 1/4π, which would preserve the unit pole.
The unrationalised systems are then a mix of the three rules describe above.

8 The FPSC and the UES
Leo Young[You69] gives quite an extensive account of e�orts to reconcile the diverse formulae that arise
from the older theoretical physics and that which is now taught in schools. While this is generally
done by adding constants to the individual author's favourite system, Young's solution is to apply new
dimensions to these. Such constants are to be read as system constants, but can be given some sort of
physical meaning.

The basic approach is to take a body of equations in two di�erent systems, such as c.g.s. and SI, and
compare the formulae. Where there is a di�erence, one might introduce a constant, say S = U = 1 in
SI, and then put S = 4π and U = 1/c in the c.g.s.

c∇×E = −τB ∇×E = −τB ∇×E = −UτB
c∇×H = 4πj + τD ∇×H = j + τD ∇×H = SUj + UτD

∇ ·D = 4πρ ∇ ·D = ρ ∇ ·D = Sρ

∇ ·B = 0 ∇ ·B = 0 ∇ ·B = 0
S = c(E×H)/4π S = E×H S = (E×H)/SU
D = εrE = E + 4πP D = εE = E + P D = εE = E + SP

The equation Φ = SQ might suggest that S could be associated with solid angle, and that the c.g.s.
unit of �ux is represented by Q.steradian, while the rationalised form might be represented by Q.sphere.
One then reads the unit as charge times solid angle. Likewise, magnetic �ux has the dimensions of V Ut,
is supposed to arise from magnetic charge, which is variously V Ut/radians or V Ut/spheres.

Likewise, the equation I = QU/t might be read that the Ampere-current is measured in am�
pere-turns, and that such arise from Q/t amperes by U turns.

Young spent a whole chapter dealing with this notion, before suggesting it was a bad idea, because
not all solid angles and turns are being modi�ed: only particular ones.
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8.1 Pre�x Rules
Before rationalisation became quite common, there was a suggested practice, of writing the c.g.s. electro�
static units as the practical unit, pre�xed by stat, and the corresponding electromagnetic unit pre�xed by
ab. So, the erstwhile unnamed unit of c.g.s.e. charge is a statcoulomb βC and the c.g.s.m. unit becomes
an abcoulomb αC.

When rationalisation is applied, the coulomb of charge produces a coulomb of �ux, whilst a stat�
coulomb of charge produces 4π statcoulombs of �ux. One can no longer apply the common conversion
factors.

None the same, the idea that the factor of c can be handled by a named rule forms the basis of the
U.E.S. rules.

8.2 The Rationalisation Rules
Pre�x (c) Su�x (4π)

G Gaussian 0 U Unrational 0
J Indirect 2$ − E
E Electric $ − η I Conventional β − η
M Magnetic $ + η − E Y Trittade β + η − E
W Derational $ + β − E
V Base $ L Light β

D Electrodynamic E − L O Heavy β + E − L

N Symmetric $ − 1
2E R Rational β − 1

2E

C Sym. ED. 1
2E − L

9 UES and Systems
9.1 The Units in various Systems

e.s.u. e.m.u. SI BR=fpsc

E E dyn/Fr Mx/cm s V/m Gv/ft
H Eη dyn/Sa.s Oe, Gb/m A/m Gv/ft
D Eη$ dyn/Sa.cm Gb.s/cm2 C/m2 By/ft2
B E$ erg/Fr.s Gs, Mx/cm2 T, Wb/m2 By/ft2

P Eβη$ Fr/cm2 Bi.s/cm2 C/m2 Vb/ft2
J Eβ$ Sa.s/cm2 Up/cm2 Wb/m2 Vb/ft2
K Eβ Sa/cm Up/cm.s V/m Or/ft
M Eβη Fr/cm.s Bi/cm A/m Or/ft

w E2βη$ dyn/cm2 =erg/cm3 N/m2 pdl/ft2

c.g.s. Gaussian GU units in bold, Indirect JU units in regular face.
fpsc Dimensions agree between SI and FPS when the fps is in italic.
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